References
<A NAME="RD15403ST-1">1</A>
Greenhill JV.
Lue P. In Amidines and Guanidines in Medicinal Chemistry. Progress in Medicinal Chemistry
Vol. 30:
Ellis GP.
Luscombe DK.
Elsevier;
Amsterdam:
1993.
p.203
<A NAME="RD15403ST-2">2</A>
Usui H.
Watanabe Y.
Kanao M.
J. Heterocycl. Chem.
1993,
30:
551
<A NAME="RD15403ST-3A">3a</A>
Granik VG.
Russ. Chem. Rev.
1983,
52:
377
<A NAME="RD15403ST-3B">3b</A>
Boyd GV. In Recent Advances in the Synthesis of Amidines, The Chemistry of Amidines and Imidates
Patai S.
Rappoport Z.
John Wiley and Sons;
Chichester:
1991.
p.339
<A NAME="RD15403ST-4A">4a</A> From microbial broth of Pseudomonas fluorescens:
Hida T.
Tsubotani S.
Funabashi Y.
Ono H.
Harada S.
Bull. Chem. Soc. Jpn.
1993,
66:
863
<A NAME="RD15403ST-4B">4b</A> From Niembergia hippomanica:
Buschi CA.
Pomilio AB.
Phytochemistry
1987,
26:
863
<A NAME="RD15403ST-4C">4c</A> From Brunfelsia grandiflora D:
Lloyd HA.
Fales HM.
Goldman ME.
Jerina DM.
Plowman T.
Schultes RE.
Tetrahedron Lett.
1985,
26:
2623
<A NAME="RD15403ST-4D">4d</A> From Streptomyces distallicus:
Arcamone F.
Orezzi PG.
Barbieri W.
Nicolella V.
Penco S.
Gazz. Chim. Ital.
1967,
97:
1097
<A NAME="RD15403ST-4E">4e</A>
Oxley P.
Short WF.
J. Chem. Soc.
1946,
147
<A NAME="RD15403ST-4F">4f</A> Streptomyces spp.:
Nakamura S.
Karasawa K.
Yonehara H.
Tanaka N.
Um H.
J. Antibiot. Ser. A
1961,
14:
103
<A NAME="RD15403ST-4G">4g</A> From Indigofera spicata:
Hegarty MP.
Pound AW.
Nature (London)
1968,
217:
354
<A NAME="RD15403ST-4H">4h</A>
Peck RL,
Schafer HM, and
Wolf FJ. inventors; US Pat. 2804463. From microbial broth of Nocardia Formica, beta-(5-imino-2-pyrrolidine-carboxamido)-propanamidine:
<A NAME="RD15403ST-4I">4i</A>
Peck RL,
Schafer HM, and
Wolf FJ. inventors; US Appl. Pat. 594267. Also see:
<A NAME="RD15403ST-5">5</A>
Grivas JC.
Taurins A.
Can. J. Chem., Rev. Can. Chim.
1961,
39:
761
<A NAME="RD15403ST-6A">6a</A>
Pinner A.
Chem. Ber.
1885,
18:
2845
<A NAME="RD15403ST-6B">6b</A>
Stilz HU.
Jablonka B.
Just M.
Knolle J.
Paulus EF.
Zoller G.
J. Med. Chem.
1996,
39:
2118
<A NAME="RD15403ST-7">7</A>
Schnur RC.
J. Org. Chem.
1979,
44:
3726
<A NAME="RD15403ST-8A">8a</A> Alkali metal salts:
Passet BV.
Voropaev TI.
Kalashni NA.
Kulbitsk GN.
Zh. Org. Khim.
1972,
8:
1246
<A NAME="RD15403ST-8B">8b</A> Aluminium amides:
Garigipati RS.
Tetrahedron Lett.
1990,
31:
1969
<A NAME="RD15403ST-8C">8c</A> Ammonium alkyl or aryl sulfonates:
Charlton PT.
Maliphant GK.
Oxley P.
Peak DA.
J. Chem. Soc.
1951,
485 ; ref. 4e
<A NAME="RD15403ST-8D">8d</A> Lewis acids (AlCl3, ZnCl2) at 150-200 °C:
Oxley P.
Partridge MW.
Short WF.
J. Chem. Soc.
1947,
1110
<A NAME="RD15403ST-8E">8e</A> Cu(I)Cl:
Rousselet G.
Capdevielle P.
Maumy M.
Tetrahedron Lett.
1993,
34:
6395
<A NAME="RD15403ST-8F">8f</A> FeCl3 and alkyl halides:
Fuks R.
Tetrahedron
1973,
29:
2147
<A NAME="RD15403ST-8G">8g</A> Triethyloxonium tetrafluoroborate:
Lambert C.
Merenyi R.
Caillaux B.
Viehe HG.
Bull. Soc. Chim. Belg.
1978,
94:
457
<A NAME="RD15403ST-9">9</A> Lanthanide(III) triflates:
Forsberg JH.
Spaziano VT.
Balasubramanian TM.
Liu GC.
Kinsley SA.
Duckworth CA.
Poteruca JJ.
Brown PS.
Miller JL.
J. Org. Chem.
1987,
52:
1017
<A NAME="RD15403ST-10">10</A> SmI2:
Xu F.
Sun JH.
Shen Q.
Tetrahedron Lett.
2002,
43:
1867
PCl5, POCl3 and SOCl2:
<A NAME="RD15403ST-11A">11a</A>
Partridge MW.
Smith A.
J. Chem. Soc., Perkin Trans. 1
1973,
5:
453
<A NAME="RD15403ST-11B">11b</A>
Bredereck H.
Gompper R.
Klemm K.
Rempfer H.
Chem. Ber.-Recueil
1959,
92:
837
<A NAME="RD15403ST-12">12</A> Tetrakis(dimethylamino)titanium:
Wilson JD.
Wager JS.
Weingarten H.
J. Org. Chem.
1971,
36:
1613
<A NAME="RD15403ST-13">13</A>
Dunn PJ. In Amidines and N-Substituted Amidines, Comprehensive Organic Functional Groups Transformations
Vol. 5.:
Katritzky AR.
Meth-Cohn O.
Rees CW.
Elsevier;
Amsterdam:
1995.
p.751
<A NAME="RD15403ST-14">14</A>
Newbery G.
Webster W.
J. Chem. Soc.
1947,
738
<A NAME="RD15403ST-15A">15a</A>
Collado IG.
Hanson JR.
Macías-Sánchez AJ.
Tetrahedron
1996,
52:
7961
<A NAME="RD15403ST-15B">15b</A>
Collado IG,
Hanson JR, and
Macías-Sánchez A. inventors; J. Span. Pat. ES 2154185.
; Chem. Abstr. 2001, 135, 195688
<A NAME="RD15403ST-15C">15c</A> Collado I. G., Hanson J. R., Macías-Sánchez A.; Span. Pat. Appl. ES 1998-2241,
1998
<A NAME="RD15403ST-16">16</A>
Collado IG.
Hernández-Galán R.
Durán-Patrón R.
Cantoral JM.
Phytochemistry
1995,
38:
647
<A NAME="RD15403ST-17">17</A>
Hanson JR.
Pure Appl. Chem.
1981,
53:
1155
<A NAME="RD15403ST-18A">18a</A>
Rebordinos L.
Cantoral JM.
Victoria-Prieto M.
Hanson JR.
Collado IG.
Phytochemistry
1996,
42:
383
<A NAME="RD15403ST-18B">18b</A>
Collado IG.
Hernandez-Galán R.
Victoria-Prieto M.
Hanson JR.
Rebordinos L.
Phytochemistry
1996,
41:
513
<A NAME="RD15403ST-19">19</A>
Collado IG.
Hanson JR.
Macías-Sánchez AJ.
Mobbs D.
J. Nat. Prod.
1998,
61:
1348
Excess of nucleophiles:
<A NAME="RD15403ST-20A">20a</A>
Möller F. In Methoden der Organischen Chemie (Houben- Weyl)
Vol. 11/1, 4th ed.:
Müller E.
Thieme Verlag;
Stuttgart:
1957.
p.311
<A NAME="RD15403ST-20B">20b</A>
Mousseron M.
Jullien J.
Jolchine Y.
Bull. Soc. Chim. Fr.
1952,
757
<A NAME="RD15403ST-20C">20c</A>
Deyrup JA.
Moyer CL.
J. Org. Chem.
1969,
34:
175
<A NAME="RD15403ST-20D">20d</A>
Crooks PA.
Szyndler R.
Chem. Ind. (London)
1973,
1111
<A NAME="RD15403ST-21">21</A> Metal amides and Lewis acids:
Cossy J.
Bellosta V.
Hamoir C.
Desmurs J.-R.
Tetrahedron Lett.
2002,
43:
7083 ; and references cited therein
Lewis acids with poorly nucleophilic counter-anions:
<A NAME="RD15403ST-22A">22a</A> Ph4SbOTf:
Fujiwara M.
Imada M.
Baba A.
Matsuda H.
Tetrahedron Lett.
1989,
30:
739
<A NAME="RD15403ST-22B">22b</A> Yb(OTf)3:
Meguro M.
Asao N.
Yamamoto Y.
J. Chem. Soc., Perkin Trans.1
1994,
2597
<A NAME="RD15403ST-22C">22c</A>
Hou X.-L.
Wu J.
Dai L.-X.
Xia L.-J.
Tang M.-H.
Tetrahedron: Asymmetry
1998,
9:
1747
<A NAME="RD15403ST-22D">22d</A> Ln(OTf)3:
Chini M.
Crotti P.
Favero L.
Macchia F.
Pineschi M.
Tetrahedron Lett.
1994,
35:
433
<A NAME="RD15403ST-22E">22e</A> LiOTf:
Auge J.
Leroy F.
Tetrahedron Lett.
1996,
37:
7715
<A NAME="RD15403ST-23">23</A>
Sekar G.
Singh VK.
J. Org. Chem.
1999,
64:
287
<A NAME="RD15403ST-24">24</A>
Typical Experimental Procedure: To a magnetically stirred solution of caryophyllene
oxide (2) (450 mg, 2.045 mmol) and aniline (4a) (353 mg, 8.18 mmol) in anhyd MeCN (8 mL), Sn(OTf)2 (351 mg, 0.51 mmol) was added and the reaction mixture was heated to 80 °C. After
24 h., once compound 2 was consumed (TLC), the solvent was evaporated under reduced pressure and the crude
reaction mixture was purified by column chromatography on silica gel to yield the
amidine 6a (340 mg, 47%) and the amine 7a (36 mg, 5%).
<A NAME="RD15403ST-25">25</A>
Selected physical data for compound 6a: [α]D +16.6 (c 9.2 mg/mL, MeOH). Selected physical and spectroscopic data for compound
6b: [α]D -3.2 (c 43.3 mg/mL, MeOH). 1H NMR (400 MHz, CD3OD): δ = 0.86 (s, 3 H, H3-15′), 0.89 (s, 3 H, H3-13′α), 1.01 (s, 3 H, H3-14′β), 1.20 (d, J
12
′
a-12
′
b = 11.0 Hz, 1 H, H-12′a), 1.42 (d, J
12
′
b-12
′
a = 11.0 Hz, 1 H, H-12′b), 1.62 (dd, J
3
′
α
-
2
′
α = 6.6 Hz, J
3
′
α
-
3
′
β = 11.4 Hz, 1 H, H-3′α), 1.70 (t, J
3
′
β
-
2
′
α = J
3
′
β
-
3
′
α = 11.4 Hz, 1 H, H-3′β), 1.94 (m, 1 H, H-10′b), 2.04 (s, 3 H, H3-2), 3.16 (br s, 1 H, H-9′β), 3.72 (s, 3 H, H3-1′′′), 4.04 (dd, J
2
′
α
-3
′
β = 11.40 Hz, J
2
′
α
-3
′
α = 6.6 Hz, 1 H, H-2′α), 6.92 (d, J
3
′′
-
2
′′ = J
5
′′
-
6
′′ = 9.0 Hz, 2 H, H-3′′, H-5′′), 7.19 (d, J
2
′′
-
3
′′ = J
6
′′
-
5
′′ = 9.0 Hz, 2 H, H-2′′, H-6′′). 13C NMR (100 MHz, CD3OD): δ = 18.60 (c, C-2), 21.56 (t, C-6′), 24.62 (c, C-13′), 26.54 (t, C-10′), 28.79
(t, C-11′), 29.01 (c, C-15′), 30.91 (c, C-14′), 33.92 (t, C-7′), 36.01 (s, C-8′),
36.62 (t, C-12′), 39.07 (s, C-4′), 45.29 (t, C-3′), 47.03 (s, C-1′), 51.91 (d, C-5′),
56.07 (c, C-1′′′), 61.97 (d, C-2′), 75.13 (d, C-9′), 115.92 (2C, d, C-3′′, C-5′′),
128.65 (s, C-1′′), 129.50 (2C, d, C-2′′, C-6′′), 161.34 (s, C-4′′), 165.71 (s, C-1).
MS (EI):
m/z (rel. int.) = 384 (87) [M+], 369 (22) [M - 15]+, 325 (41), 262 (33). Compound 6c: [α]D +12.9 (c 20 mg/mL, MeOH). 1H NMR (400 MHz, CD3OD): δ 0.92 (s, 3 H, H3-15′), 0.94 (s, 3 H, H3-13′α), 1.05 (s, 3 H, H3-14′β), 1.74 (m, 1 H, H-12′b), 1.77 (s, 3 H, H3-2), 2.00 (m, 1 H, H-10′b), 3.22 (br s, 1 H, H-9′β), 4.29 (m, 1 H, H-2′α), 6.70 (d,
J
2
′′
-3
′′ = J
6
′′
-5
′′ = 8.4 Hz, 2 H, H-2′′, H-6′′), 7.33 (d, J
3
′′
-2
′′ = J
5
′′
-
6
′′ = 8.4 Hz, 2 H, H-3′′, H-5′′). 13C NMR (100 MHz, CD3OD): δ = 18.08 (c, C-2), 21.76 (t, C-6′), 25.02 (c, C-13′), 26.79 (t, C-10′), 29.04
(t, C-11′), 29.18 (c, C-15′), 31.31 (c, C-14′), 34.46 (t, C-7′), 35.93 (s, C-8′),
37.19 (t, C-12′), 38.40 (s, C-4′), 45.74 (t, C-3′), 46.68 (s, C-1′), 52.11 (d, C-5′),
59.40 (d, C-2′), 75.78 (d, C-9′), 115.64 (s, C-4′′), 126.18 (d, 2 C, C-2′′, C-6′′),
132.63 (d, C-3′′, C-5′′), 152.51 (s, C-1′′), 159.51 (s, C-1). MS (EI):
m/z (rel. int.) = 434(48) [M + 2]+, 432 (47) (M+), 375 (23), 373 (22), 353 (41) [M - 79]+, 292 (27), 262(46). Compound 6d: [α]D +98.4 (c = 17 mg/mL, MeOH). 1H NMR (400 MHz, CD3OD): δ = 0.96 (s, 3 H, H3-15′), 1.00 (s, 3 H, H3-13′), 1.14 (s, 3 H, H3-14′), 1.86 (2 H, H-3′α, H-3′α), 2.08 (m, 1 H, H-10′b), 2.59 (m, 3 H, H3-2), 3.25 (sa, 1 H, H-9′β), 4.02 (dd, J
2
′
α
-3
′
β = 11.1 Hz, J
2
′
α
-3
′
α = 6.3 Hz, 1 H, H-2′α), 7.40 (t, J
4
′′
-3
′′ = J
4
′′
-
5
′′ = 5.0 Hz, 1 H, H-4′′), 8.81 (d, J
3
′′
-
4
′′ = J
5
′′
-
4
′′ = 5.0 Hz, 2 H, H-3′′, H-5′′). 13C NMR (100 MHz, CD3OD): δ = 17.81 (c, C-2), 21.60 (t, C-6′), 24.77 (c, C-13′), 26.64 (t, C-10′), 28.89
(c, C-15′), 29.01 (t, C-11′), 30.91 (c, C-14′), 33.83 (t, C-7′), 36.03 (s, C-8′),
36.46 (t, C-12′), 39.49 (s, C-4′), 46.34 (t, C-3′), 46.61 (s, C-1′), 51.87 (d, C-5′),
65.85 (d, C-2′), 75.14 (d, C-9′), 119.82 (d, C-4′′), 159.16 (s, C-1′′), 159.69 (d,
2 C, C-3′′, C-5′′), 165.96 (s, C-1). HMBC cross peaks (selected): C-1 → H-2′α, H3-2. MS (EI):
m/z (rel. int.) = 357 (27) [M + 1]+, 339 (40) [M + 1 - 18]+, 263(24)
<A NAME="RD15403ST-26">26</A>
Herman H.
Tezuka Y.
Kikuchi T.
Supriyatna S.
Chem. Pharm,. Bull.
1994,
42:
138
<A NAME="RD15403ST-27">27</A>
Selected physical and spectroscopic data for compound 8: [α]D +14.0 (c 2.2 mg/mL, MeOH). 1H NMR (400 MHz, CDCl3): δ = 0.92 (s, 3 H, H3-13′α), 0.95 (s, 3 H, H3-15′), 1.06 (s, 3 H, H3-14′β), 1.66 (dd, J = 10.8, 11.6 Hz, 1 H, H-3′β), 1.76 (m, 1 H, H-11′b), 1.77 (s, 3 H, H3-2), 2.00 (m, 1 H, H-10′b), 3.24 (s, 3 H, H3-1′′′), 3.31 (br s,1 H, H-9′β), 3.46 (dd, J = 6.0, 10.8 Hz, 1 H, H-2′α), 7.08 (d, J = 7.6 Hz, 2 H, H-2′′, H-6′′), 7.17 (t, J = 7.6 Hz, 1 H, H-4′′), 7.32 (d, J = 7.6 Hz, 2 H, H-3′′, H-5′′). 13C NMR (75 MHz, CDCl3): δ = 15.06 (q, C-2), 21.02 (t, C-6′), 25.51 (q, C-13′α), 26.45 (t, C-10′), 28.12
(t, C-11′), 28.50 (q, C-15′), 31.38 (q, C-14′β), 33.45 (t, C-7′), 34.95 (s, C-8′*),
36.76 (t, C-12′), 38.62 (s, C-1′*), 39.67 (q, C-1′′′), 46.09 (s, C-4′*), 47.46 (t,
C-3′), 50.75 (d, C-5′), 67.55 (d, C-2′), 75.41 (d, C-9′), 125.41 (d, C-4′′), 126.75
(d, 2 C, C-2′′, C-6′′), 129.15 (d, 2 C, C-3′′, C-5′′), 147.17 (s, C-1′′), 156.02 (s,
C-1). HMBC cross peaks(selected): C-1 → H3-1′′′, H-2′α, H3-2; C-1′′ → H3-1′′′, H-3′′, H-5′′. MS (EI):
m/z (rel. int.) = 368 [M]+(10), 353 [M - 15]+(5), 262 (20).
<A NAME="RD15403ST-28">28</A>
Gautier JA.
Miocque M.
Fauran C.
Lecloare AY.
Bull. Soc. Chim. Fr.
1971,
2:
478
<A NAME="RD15403ST-29">29</A> When a less hindered epoxide is prepared on the caryophyllane skeleton, normal
opening products are observed:
Collado IG.
Hanson JR.
Hitchcock PB.
Macías-Sánchez AJ.
J. Org. Chem.
1997,
62:
1965